Automating Component Test Insertion into DORunlIl CTBUILD Software
Packages

Mariano A. Zimmler

New York University
New York, NY 10012

Supervisor
Dr. David J. Ritchie
Computing Division

Fermi National Accelerator Laboratory
Summer Internships in Science and Technology
Batavia, 1L 60510

Summer 2002

1 Abstract

This paper describes two projects related to the DO Experiment code releases. The first and major project involved
writing a meaningful test for every component in each DORunll CTBUILD software package. The second project
consisted in writing a script that wonld generate one or more web-pages displaying the status of the DO code releases.

2 Introduction

The DO experiment was proposed for the Fermilab antiproton-proton Tevatron Collider in 1983
and approved in 1984. After 8 years of design, testing, and construction of its hardware and software
components, the experiment recorded its first antiproton-proton interaction on May 12, 1992,
starting the data-taking petiod refetred to as "Run 1" which would last until the beginning of 1996.
During this period, antiproton-proton collisions were studied mainly at an energy of 1800 GeV in
the center of mass.

For many years, our understanding of nature has revolved around four separate and seemingly
unrelated forces: gravity, the electromagnetic force, the weak force, and the strong force. Over the
last three decades, the development of many experimental and theoretical advances has led to a
coherent and predictive picture of nature that could successfully account for all of these forces with
the sole exception of gravity—the Standard Model (SM).

During the 1960s and 70s, it was recognized that the electromagnetic and weak forces could be
unified under a single description, and the theory of electroweak interactions was born. The strong
and electroweak interactions, however, still remained apart. There are now compelling reasons to
believe that the Standard Model, though remarkably accurate in its predictions, is still only an
approximate description of nature. Many other theories have been postulated that provide
unification of the forces but they have still not been tested.

According to the Standard Model, the particles created at the Tevatron fall into two broad classes:
leptons (electrons, muons, taus, and a different flavor of neutrino associated with each of them) and
hadrons (protons, pions, kaons, etc.). These are simply combinations of the six quarks. Each quark
and lepton is also mirrored by its corresponding antiparticle. The gauge bosons transmit the

fundamental forces; these include the photon (electromagnetic force), the gluons (strong force), and
the W and Z bosons (weak force).

The Fermilab accelerator complex provides extremely high intensity proton and antiproton beams at
the world's highest energy (900 billion electron volts) that can probe these fundamental forces.
These two beams collide at several locations around the Tevatron ring. At two of these locations,
experiments are performed by the CDF and DO collaborations.

The DO experiment contains many sophisticated components, besides just the particle detectors.
These include the electronics needed to select and digitize events and the software necessary to
monitor the experiment and reconstruct events written to magnetic tape.

The DO detector is composed of three major subsystems: a collection of tracking detectors
extending from the beam axis to a radius of 30 inches, energy-measuring calorimeters surrounding
the tracking region and an encompassing muon detector that deflects muons using solid iron
magnets. The entire detector is about 65 feet long, 40 feet wide and high, and weighs approximately
5500 tons.

CPLATZZ B-3 VIEW 21-:EE-1993 09114 | Fir. 52736 Evcak -1:|‘.|1u-:r.1-:—1993. 02141
Max ET- 0.1 o=w
CREH ET 2THM- 215.5 CoW
VIX -n E- -l.2 [cm) | AR
|'|U:cEqL_'l
lxx" /f f \\ H" |:|l".‘i-CI:{£J..'I
¢ £ B . \—M'\ 5

W25<E
N o
:|:||‘-.;" e 0 ;-.1|:|:

e r

¥ e :

| - \oul
EEY
o)"

kY L T L LR
- N i
Tread=

WEFT

=ty

Fig. 1: A side view of a reconstructed event. The muon track is shown as a green line, the electron track is shown as a
short red line, and the two main jet enetgy depositions in the calorimeters are shown in different colors that represent
the energies in the contributing cells.

The detector has over 120,000 channels of individual electronic signals. These are used to analyze
the properties of an event and to decide whether it is a candidate for further study. This "triggering"
occurs in three stages: the first stage is completed within 4 microseconds, before the next accelerator
beams bunch arrives at the detector. A second stage follows the digitization of all the information in

a farm of dedicated microprocessors. Events that are interesting enough to survive this process are
eventually written to tape and reconstructed for subsequent analysis.

The figure above shows a characteristic event observed in the detector. The directions of all charged
particles are measured in tracking chambers surrounding the collision point. These detectors rely
upon the ionization of a gas caused by the passage of charged particles; the produced ionization is
focused electrically onto sensors that record the amount of charge and its time of arrival, and thus
permit the reconstruction of the particle trajectory.

The energy of all particles except muons and neutrinos is measured in the three calorimeters
surrounding the tracking volume. Fach is composed of a stack of heavy metal plates (uranium, steel
or copper) interspersed between gaps containing liquid argon. Particles hitting on the calorimeters
interact with 1t, yielding secondary particles, which also interact, leading to a shower of particles that
ultimately ends when all the secondary particles lose their energy and stop. The passage of the full
set of showering particles through the argon gaps produces ionization electrons that are collected on
localized electrodes; the observed signal is then proportional to the incoming particle energy. The
pattern of energy deposition along the shower is used to distinguish electrons or photons from
hadrons. Clusters of deposited energies are used to reconstruct the jets associated with quarks and
gluons.

Muons, however, can penetrate the calorimeters without much change in their energy or direction.
To detect them, gas-filled tracking chambers positioned before and after magnetized blocks of iron
are placed in the outer region of the detector. These chambers provide the muon trajectories before
and after the bend in the magnet, and thus yield the momentum or energy of the muons.

Neutrinos do not interact with matter enough to be detected directly. Although their presence can
be inferred from inverse beta decay processes, their energy and momentum is typically derived from
the apparent imbalance in the conservation of those quantities in a collision.

The computer software for DO is almost completely custom-written. It is required for monitoring
and control of the experiment, for the microprocessors in the trigger system, for controlling the data
flow to the ultimate logging to tape, for the reconstruction of particles from the signals measured in
the detector, and for managing the large data samples (70 mullion events, 3 Terabytes of data)
acquired over the Run I. Special attention has been paid to graphical displays of events and detector
performance. Many millions of simulated events have been created for the study of detector
petformance and specific physics processes through "Monte Catlo" programs that mimic the
response of the detector. The software that processes both the real and simulated data samples is the
one this project is concerned with.

3 Background: The physical structure of DORunlI software

DO has previously adopted BaBar's SoftRelTools (SRT) as its standard code management
environment. However, SRT lacked any support for testing, other than linking test executables. DO
adopted Dave Adam's CTEST build intetface specification, implemented by CTBUILD.

The standard code management environment simply defined a convention for the physical
organization of both the code and the instructions for building C++ software.

The next few sections provide a detailed overview of relevant characteristics of the CTEST
specification necessary to the understanding of the results of the project.

3.1 Code Organization

The fundamental unit of the software organization in CTEST is the component, which consists of a
header file, an zmplementation file and a zest file. The implementation file contains the source, which is
compiled mnto a bare object or a library. It includes (through the preprocessor directive #i ncl ude)
the header. The test file is a main program which tests the header interface and implementation source and returns
zero if the test is succesful. Typically a component specifies one class and associated free functions.

The DORunll Software Release consists of over three thousand components. Components are
grouped into packages (~500) and packages are grouped into subsystems (~25). The code and
instruction files for each package are contained in a separate directory. Each package contributes
only to its own library. A typical package might have five to ten components although there are no
limitations to the number of components a package can have. CTEST is also defined only at the
package level. The instructions for building are specific to each package.

In addition to components, a package may include stand-alone headers, additional tests and sources
to be compiled into binaries and scripts. The package directory may be divided into subdirectories
for the purpose of organization or to apply different instructions to different pieces of code.
However, all the library components must reside i the same subdirectory. Everything in the
package directory including subdirectories is considered to be a part of the package and all files
which are part of the package are contained in the directory.

3.2 Dependencies

CTEST does not specify the order in which packages are built but it does specify the order of
components within a package.

Packages may depend on one another through included header files or through libraries. Headers in
other packages are incorporated using an include mechanism that is slightly different from the C++
standard—namely, #i ncl ude "package/file", where the first directory in the include file name is
the package name.

Action Relevant instruction file

Header installation HEADER_DIR* HXXTYPE*, INCLUDE_TYPES*,
INCLUDE_FILES*, INCLUDES
Library dependencies LIBDEPS*

Library build COMPONENTS, CXXTYPE*

Component testing COMPONENTS, TXXTYPE*, CTEST_DIR*
Object build OBJECT_COMPONENTS, CXXTYPE*
Integrated testing ITEST, OBJECTS, LIBRARIES, CXXTYPE*
Binary build BINARIES, OBJECTS, LIBRARIES, CXXTYPE*
Script installation SCRIPTS

Table 1: CTEST actions and associated instruction files. Those marked with asterisks only appear in the top-level
package directory.

3.3 Build instructions

The instructions for building a package are taken from instruction files within the package. Table 1
lists the actions which are carried out and the instruction files on which each action depends. Those

instructions that apply package-wide and appear in the top-level package directory are marked with
asterisks. The others apply only to the subdirectory in which they reside.

3.3.1 File extensions

There are many conventions for C++ file name extensions and CTEST does not impose one.
Instead, the three files HXXTYPE, CXXTYPE and TXXTYPE specify the extensions for header,
source implementation and test files, respectively. These files, however, do not appear in any of the
DORunll packages. The respective default .hpp, .cpp or _t.cpp 1s used. Although the default
extension for the header 1s .hpp, other extensions are also supported such as .h, .hh and .H.

3.3.2 Processing subdirectories

For all actions except header installation, instructions may reside in the top-level directory or any
subdirectory. Each of the subdirectories listed 1 the instruction file SUBDIRS is processed after
carrying out the action in the current directory.

3.3.3 Header Installation

Instructions are provided to publish include files. Sources in other packages may include such files
as 1f they were in a subdirectory with the name of the originating package. For example, the C++
header Class.hpp from package demo 1s included as follows:

#i ncl ude "deno/ d ass. hpp"

All the include files in a directory (and its subdirectories) may be published by listing the directory in
HEADER_DIR. All the files in the listed package subdirectory with the appropriate extension are
published. If additional extensions are listed in INCLUDE_TYPES, then the corresponding files
will also be published. Files in subdirectories of the header directory are made available including the
directory path.

Despite the apparent convenience of such an implementation, neither HEADER_DIR nor
INCLUDE_TYPES are a convention followed by DORunlI software packages. Instead, header files
are usually contained in a subdirectory that has the same name as the package. Occasionally, the
header files are contained in the same subdirectory as the implementation and test files. Rarely, no
division into subdirectories 1s made and headers as well as implementation and test files are
contained in the top-level package directory.

3.3.4 Library dependencies

Each package builds at most one library whose name is the same as that of the package. The library
will generally depend on other libraries, Ze., there are other libraries which are used by the objects
contained i the package library. These libraries are listed in the top-level mnstruction file LIBDEPS.
Whenever the package library is used for linking, all of the libraries listed in LIBDEPS are listed
after it on the link line.

LIBDEPS is certainly a convention followed by almost every software package in the release.
However, although this file is almost always included, for various reasons it is often constructed
impropetly. This file must contain every package that is in some way referenced by the objects in the
package. Not doing so will produce undefined reference errors during the building of the libraries,
which will cause problems later on.

3.3.5 Library build

The list of component that are to make up the package library is taken from the instruction files
COMPONENTS. The appropriate implementation extensions are appended to the entries in this
list to obtain the respective names of the source files. The sources are then compiled and archived in
the package library.

Components should not have cyclic dependencies and should be listed in dependency order, ze., any
component should not depend on those following it in the list.

Components may be distributed among multiple directories with a COMPONENTS mstruction file
in each. However, there is no guarantee as to the order in which the directories will be processed, so
components in different directories should not depend on one another. Typically a package will have
only one directory containing components. A package which has no COMPONENTS files does not build a
library.

3.3.6 Component testing

A test file defining a main program must be provided for each component. The names of these files are obtained
by appending the appropriate test extensions to the component name. If the file CTEST_DIR
appears 1n the top-level package directory, then the test files are found in the subdirectory listed in
that file. Otherwise (and typically) each test file resides in the same directory as its component
source. The tests are then compiled and linked against the package library and its dependent libraries
derived from LIBDEPS.

The resulting executable 1s run using a component test script which is obtained from one of three
locations. First, the directory containing the component test is checked for a file with the same name
as the component and the extension .sh. If that file is not present, then that directory is searched for
the file run_component_test.sh. If neither 1s present, a default script is used.

The test 1s considered successful if the script returns zero. The default script runs the test executable
and returns its return value.

The instructions for building other elements such as object components, integrated tests, binaries
and scripts are also provided by CTEST, but they are not relevant to this project and will be omitted.

In short, the CTEST interface specification provides that build actions are controlled by a set of
"instruction files" located in a package's top directory or subdirectoties. A GNUmakefile is needed
in each package subdirectory where any build action is to take place. CTEST supports two types of
testing: "component tests," which apply to all library soutce files ("components") and which ate only
allowed to invoke lowet-level objects and libraties, and "integrated tests," which are stand alone tests,
and which are not restricted to dependence on lower level objects. Both kinds of tests are invoked
by a script, which can either be a user-written one or a default script supplied by the CTEST
implementation.

4 Tools acquired

41 UNIX

The DORunll release used in this project resides in a machine called dOmino.fnal.gov which runs
the IRIX version of the UNIX operating system developed by Silicon Graphics (SGI). Therefore, a
familiarity with the UNIX operating system was crucial.

6

4.2 The shell programming language

The UNIX operating system can be broken down into three basic components: the scheduler, the
file system, and the shell. The shell is the UNIX system's command interpreter. It is the part of the
UNIX system that sits between the user and the system, forming a shell around the computer that is
relatively consistent in its outward appearance. It also provides a powerful programming language,
the shell programming language, which was used for the implementation of a preliminary project.

4.3 The vi editor

Viis a screen editor that allows the user to see portions of a file on the terminal's screen and to
modify characters and lines by simply typing at the current cursor position. Two screen editors are
supplied with the UNIX System V Release 2.0. Of the two, vi is the more popular one, and the one
used to perform editing during the initial stages of the project.

44 CVS
CVS is a version control system; it records the history of files using version numbers.

Every version of every file that has ever been created can of course just be saved, but this would
waste an enormous amount of disk space. Instead, CVS stores all the versions of a file in a single file
in a way that only stores the differences between versions.

The entire DORunlI release sits in a CVS repository. In order to make any changes to it, a copy of
the different packages had to be extracted into a local release area. Once the changes had been made,
they were checked back into the repository.

4.5 Python

Python was created in the eatly 1990s by Guido van Rossum at Stichting Mathematisch Centrum
(CWI) in the Netherlands as a successor of a language called ABC. It is an interpreted, interactive,
object-oriented programming language, often compared to Tcl, Perl, Scheme or Java.

It is a simple but extremely powerful programming language: it supports modules, classes,
exceptions, very high level dynamic data types, and dynamic typing. It also supports interfaces to
many system calls and libraries, as well as to various windowing systems (X11, Motif, Tk, Mac,
MFC). The Python implementation 1s also portable: it runs on many brands of UNIX, on Windows,
DOS, OS/2, Mac, Amiga... Because of these characteristics, Python was the language used to
implement all major scripts related to the different projects.

5 My project

My summer project involved doing an analysis of each of 585 DORunll software packages
concerning the following aspects:

® Identify which packages were CIBUILD and which ones SRT. Only CTBUILD packages
would be modified.

" For each CTBUILD package evaluate every component test to determine whether it is 0"
ordet, 1 order, or 2™ order, whete

h
% 0" order: a main program which returns zero and does not even include its own

header file,

% 1" order: a 0" order test which includes its own header file. This type of component
test tests the syntactical correctness of the code in the header as well as the
correctness of dependencies,

% 2" order: a 1% order test which invokes the constructor of each class defined in the
implementation file.

" Write at least a 1" order component test. Compile and run the component tests in a local
release area by doing a gmake al | t est operation.

" Write a 2™ order component test if time permits. This objective, however, was eventually
dropped, since constructor calls required a deeper understanding of the implementation and
header sources, and therefore made it extremely difficult to process in an automatic way.

The relevance of such a project arose from a concern put forth by a number of DO people about
the apparent lack of testing in DORunll software packages. The estimate was that about 50% of the
packages 1n DORunll did not have meaningful test and thus some of the code that was being
included in the release was probably not even compiling. Without appropriate testing this can
happen. In the case of a 0" order test the header is not even being compiled and therefore there is
no need for it to be working in order to build the release without errors. The consequence of this is
that it 1s only when someone tries to use the code that we know it does not work.

5.1 Inventory

The very first task to be accomplished involved evaluating each package in DORunlI to determine
which ones were CIBUILD and which ones were not, presumably SRT packages. The reason for
this was that it was needed to assess the scope of the project. The only packages that would be
altered were CTBUILD packages.

A small script was implemented in the shell programming language to do this (Appendix A). The
script recognized build packages by the presence of a GNUmakefile. GNUmakefiles with "ctbuild"
in them were considered CTBUILD packages; those without "ctbuild" were considered SRT
packages. Those packages without a GNUmakefile altogether were included in the "othet" category.
The results obtained with the script follow:

= CTBUILD: 484 packages
= SRT: 73 packages
= Other: 28 packages

5.2 First approach to test insertion

Once this initial task was accomplished and a proper assessment of the size of the project was made,
the analysis of the first subsystem was started.

Not all subsystems are similar in terms of structure and organization. Many of them were developed
with different objectives in mind and some of them offered significant difficulties for this very
reason.

It was suggested to start with the Muon subsystem, which seemed to be quite well structured and as
difficulty-free as could be expected.

Once the packages were extracted from the CVS repository each component test was examined
looking for a statement of the form

#i ncl ude "package_nane/ conponent _nane. hpp"

If such a line of code was found, the component test was listed as a first order test and the next
component test was then examined. However, if this line of code was not found a check for the
existence of the appropriate header file was performed. If the header was found this line was added
to the source of the component test.

The Muon subsystem had 196 component tests in 23 packages. Of these, 127 were 0™ order
component tests, Ze., absolutely empty tests of the form

mai n{return 0}

It was evident that the code was not being appropriately tested by developers. The project was
already showing its value.

After these changes were made, a gmake al |l test revealed errors in two packages due to an
incomplete LIBDEPS file. The changes were checked back into CVS, a new version number was
assigned to each modified package and a request for this new version to be included in the following
release was made.

Vertexing subsystem, which was very similar to Muon in its structure, was then analyzed. Of the 176
component tests in its 27 packages, 55 were found to be empty.

A gmeke al ltest on this subsystem revealed a header file that was not compiling because it
contained a reference to a class which was not being defined anywhere. The solution was to include
the referenced header in the appropriate source file.

The project was evidently producing good results. Clearly, though, the initial approach of doing
things by hand was not up to the job. For instance, as the analysis of the component tests
progressed, mistakes were occasionally made in writing down the name of the component headers
due to their length and complexity. This would then produce fatal errors at compilation time. In
addition to this, analyzing just these two subsystems consumed an enormous amount of time: about
two weeks were needed to do their analysis. To complete the remaining 24 subsystems of the
DORunll program suite would have required almost a half year!

5.3 A new approach to test insertion

I proposed to my supervisor automating component test insertion by writing a Python script to do it.
The idea was attractive, but its implementation seemed at first quite challenging due to the nature of
the structure of the packages in the release. Even though most packages had adopted the CTEST
interface, there were many different variations within CTEST. The release was apparently not
standardized enough.

A first draft of a script was written using the knowledge acquired from Muon and Vertexing. This
mitial draft was fairly simple. It accounted for all variations that were implemented in Muon and
Vetexing.

The mechanisms for checking for the appropriate include string and for writing it in the
corresponding component test were designed. It was thought these would not be significantly
altered by subsequent discoveries of alternate package structures.

5.3.1 Initial script structure

This initial script looked for a COMPONENTS file in order to derive the list of components to be
processed. In the case of Muon and Vertexing this file was found to appear in a directory called 'stc,

9.

along with the component tests. The script then looked for the header files in a directory with the
same name as the package.

5.3.2 Subsequent observations and script modifications
As progress was being made with the analysis of other subsystems a few observations were made:

®* The COMPONENTS file was found to be mainly in three different places:
% in a directory called 'stc'.
% in the top-level package directory.
% in other subdirectories with arbitrary names, such as 'base', 'material’, 'channel’, but
which are not specified by any convention.
* The component tests were found to be in four different places, the first three being shared
with the implementation files, Ze., together with the COMPONENTS file
% in a directory called 'stc'.
in the top-level package directory.
in other subdirectoties with arbitrary names, such as 'base’, 'material', 'channel’, but
which are not specified by any convention.
% in a directory called 'test, separated from the implementation files.
® Header files were found to be in two locations:

X/
L X4

X/
°

% in a directory with the same name as the package.
¢ in the same directory whete the implementation and test files were located.

Other obscure package structures were also found but occurred rarely so they were simply not
handled automatically.

With these observations I decided to develop three versions of the script that would account for all
these different variations. This implementation, however, still required that the package structure be
examined in advance and that the code be modified accordingly, ze., the name of the appropriate
directories had to be changed where it applied.

One version accounted for the most common package structure. It looked for the COMPONENTS
file and test files in 'src' and for the header files either in the same directory whete test files were
found or in a directory with the same name as the package.

A different version accounted for the case whete the test files wete found in a different directory
from the COMPONENTS file, most commonly in a subditrectory called 'test'.

The last version accounted for the case where the test files and the COMPONENTS file were found
in arbitrary subdirectories. This version also included an additional modification in the structure of
the include string, since an additional subdirectory was needed in the path of the header file.

Although these three versions of the script made it possible to insert the tests automatically, the
structure of the package still had to be examined in advance to determine which script had to be
used and which changes had to be made to the code. For the purposes of finishing the project in a
fast and effective way this was certainly enough, but for the purposes of leaving a tool that could be
run by any developer it wasn't.

5.3.3 Project completion and final script upgrade

Using these three scripts the project was finished in just a few weeks producing extremely good
results. After its completion, I decided to design one single script that would merge the three scripts

10-

and that would require no preliminary package structure analysis. This would serve to any developer
either as a reporting tool that would flag missing tests or headers files, or as a tool for actually
automatically generating simple tests in every component test of a given package.

The summary of the results of adding component tests into every DORunll CTBUILD package
follows:

Total number of subsystems processed: 23

Total number of packages processed: 495

Total number of component tests processed: 3301
Total number of added tests: 1559

Total number of errors found and fixed due to the inclusion of these tests: 44

Gathering all the information acquired from the analysis of the entire release I decided that a script
that would account for every possible package structure in the release without the need of a
preliminary examination could be written.

5.4 Script structure

The structure of the final script is explained in detail below. For the complete code, please refer to
Appendix B.

testGenerator.py

Arguments are package nanes.

def get Subdi rs(packageDirectory):
this subroutine returns the contents of SUBDIRS if it exists:
1. construct the path of the file SUBDIRS in the top-level package directory
2. if the file is not found, return O
3. if the file is found
a. read its contents into a |ist
b. when we are done, if the list is enpty, return 0
c. if something was appended to the list, return the |ist

def get Conponent s(conmponent sDirectory):
this subroutine returns the contents of COVWONENTS if it exists:
1. construct the path of the file COMWPONENTS in the top-level package directory
2. if the file is not found, return O
3. if the file is found
a. read its contents into a |ist
b. when we are done, if the list is enpty, return 0
c. if something was appended to the list, return the |ist

def anal yzeConponent Test s(conponent sLi st, subdir, package, packageD rectory):
this subroutine perforns the analysis of the list of conponents of a given package
1. initialize the list that will contain conponents with 0'" order tests and the |ist of
conponent that will contain 1% order tests
2. print the list of conmponents to standard out put
3. assign default values to the directory containing the sources of the tests, to the
directory containing the sources of the headers, and to the header nane

4. assign a tuple that contains all possible |ocations for test sources
5. look for each of these locations and append to a list the ones that exist
6. for each conponent
a. look for the corresponding test file in each possible directory until it is found.
b. if the source is not found, display an error nessage and continue with the next
conponent
c. if the source is found

i. assign a tuple that contains all possible |ocations for header sources
ii. look for each of these locations and append to a list the ones that exist

11-

iii. look for the corresponding header file with every possible extension in each

possible directory until it is found

iv. if the header is not found, display an error nmessage and continue with the
next conponent

v. if the header is found

1. construct the appropriate include string depending on where the header
file was found
2. look for the include string in the source of the conponent test

a. if anillegal include string is found, display an error nmessage and
append the nane of the conponent to a list containing the names of the
conponents that already include their own header file.

b. if the correct include string has been found
i. if the include string has been commented out, display a warning and

append the nane of the conponent to a |ist containing the nanes of
the conmponents that do not include their own header file.

ii. if the include string has not been commented out, append the nane
of the conponent to a list containing the names of the conponents
that already include their own header file.

c. if the string has not been found, append the nane of the conponent to a
list containing the names of conponents that do not include their own
header file and call a subroutine generateFirstOderTests() to insert
the string in the appropriate conponent test.

def generateFirstOderTest(testFilesDirectory, conponent, includeString):
this subroutine inserts the appropriate #include statenent corresponding to the own
conponent’s header file
1. create a copy of the source file that is going to be nodified.
2. insert the include string

def main():
1. check that environnent variables are set. If they are not, exit.
2. for each package in the argunents |ist
a. construct the package directory.

b. if the directory is not found, display an error nessage and continue with the next
package.

c. call the subroutine getSubdirs() to get the subdirectories that need to be
processed

d. if the function call returns 0, nmake the conponents directory be the sanme as the

top-1 evel package directory.

e. if the function call returns a non zero value, construct the conponents directory
for each directory returned by the function call.

f. call the subroutine anal yzeConponent Tests() for each conmponents directory

g. print the results to standard out put

5.5 A note on syntax
It is worth mentioning some interesting points about the code just explained.

An interesting syntactical construction was designed to surmount the problems posed by the original
need to have three different versions of the script.

In order to solve this difficulty, ze., where to look for the sources, the CTEST convention was
exploited. The SUBDIRS file was used to obtain a list of all directories that needed to be processed.
However, this still proved not to be sufficient, since there were certain alternatives that were not
accounted for by it. The 'test' directory, whete many packages seemed to have their test sources,
separated from the implementation sources, was not included in SUBDIRS.

A tuple containing all possible directoties, such as 'test' and those listed in SUBDIRS, was created.
The script then looked for each of these directories before performing any further action.

Once the actual list of available possibilities was obtained, the script looped through each of these
options until the target was found, instead of creating a cascade of if-statements which would not be
easy to maintain. Any new package structures could just be added to the tuple.

12-

The same syntactical construction was implemented when looking for the header sources. In this
particular case, however, it was used twice since it was necessary to implement it also for the
different accepted header extensions.

6 Conclusions

The project was extremely successful. Not only was it possible to process the entire software release,
but it was possible to do it in a very efficient way which produced a tool that can be used by
developers as a reporting device as well as a way of testing the syntactical correctness of their
sources.

The technique that was developed for ultimately approaching this problem proved that it is possible
to process certain aspects of the release in an automatic way. Other immediate applications of this
technique have already been proposed. This technique also proved that the features of CTEST can
be fully exploited for accomplishing tasks seemingly unrelated to the original purpose of such a
convention.

It is also worth mentioning that the original estimate that about 50% of the code in the release was
not being tested properly proved to be correct: 47.2% of the component tests in the release did not
test anything.

7 Automating DO Code Releases Status Generation

As substantial progress was being made with the insertion of component tests mnto DORunll
software packages, another interesting project was suggested. This project involved writing a script
that would generate an HTML web-page displaying the current status of the DO code releases.

7.1 Background: DO Code releases

DO makes weekly test releases of all its software packages to IRIX and Linux. Usually, the 3 most
recent test releases are available on disk, while production releases happen separately for major
products, approximately every 2 to 3 months.

The test releases are the ones that are actively being developed. Essentially any developer can add
changes to it. The release is built several times, each time sending email notifications to the
developers responsible for the packages that break.

Due to this extremely dynamic nature, the test releases are not very reliable. Changes are stopped,
however, when the test release is frozen. Approximately every three months, a production release is
started based on a previous frozen test release. In the production release no development is allowed.
Its purpose 1s to fix bugs and make minor necessary changes.

In the past, the web-page that contained the status of the different releases had had to be maintained
manually but this turned out to be too time consuming.
7.2 Code releases status

In the very first stage of this project it had to be decided what mformation about the release would
be included in the status page. After some discussions with David Ritchie and Alan Jonckheere, it
was decided that the release status page would have the following structure:

= A first web-page would serve as an overview of all releases, displaying whether they were on
disk or not, and also displaying the date and time that the inventory file of the release was

13

last modified. The latter would be a way of determining whether the release was being
currently modified or not.

* A second web-page would display each release along with the current build number in each
of the three machines that are used for building (dOmino.fnal.gov, dOlxbld4.fnal.gov and
dOlomite.fnal.gov) and each of the two possible compiler setups (debug or maxopt)

= A third web-page would display each release along with the freeze status of that release in
each of the three machines and for each format. The freeze process involves compressing
the release into tar files.

* A fourth web-page would display each release along with the number of broken packages of
the build specified in the Build Status Page. In case the release was currently being built, it
would display a message stating so.

7.3 The script

7.3.1 HTMLgen

Apart from the mechanism for retrieving the information about the releases that had to be designed,
a way of displaying this information in HTML format was also needed. For that, an already
developed tool called HTMIgen was used.

HTMIgen 1s a Python class library for the generation of HITML documents developed by Robin
Friedrich. It includes features such as the customization of document template graphics and colors
through the use of resource files, minimizing the need for modifying the module source code. It also
supports tables, frames, forms (persistent and otherwise) and client-side imagemaps.

The display of the mnformation would be implemented using an instance of a class provided by
HTMLgen—Series Document—for each web-page, which would then be interconnected using
navigation buttons.

7.3.2 ReleaseStatus.py skeleton

Below is the class skeleton for ReleaseStatus.py. For the complete code, please refer to Appendix C.

cl ass Tool s:
def exists(self, objective, path, input):

cl ass Conmmand:
def __init__(self, commandNane):
def execute(self):

class Build:
def __init__(self, hostName, version, release):
def get CurrentBuil dNumber (sel f, buildDir, buildList):
def get BrokenPackages(self, buildD r, buildList):
def getBuildData(self, resultsDir, results):

cl ass Rel ease:
def __init__(self, rel easeNane):
def get DatelLast Mdified(self):
def getBuil dStatus(self):
def getFreezeStatus(self):
def generateAnnotationsFile(self):

cl ass Dat abase:
def __init__(self, databaseNane):
def retrieveRel easeNanes(sel f):
def retrieveRel eases(self):
def update(self, |istCOfRel eases):

14

cl ass St atusPages:
def __init__(self):
def get Rel easeStatus(self):
def overvi ewsSt at usPage(sel f, fileNane, before=None, after=None, top=None, home=None):
def buil dStatusPage(self, fileName, before=None, after=None, top=None, hone=None):
def freezeStatusPage(self, fileNane, before=None, after=None, top=None, hone=None):
def errorsStatusPage(self, fileName, before=None, after=None, top=None, hone=None):
def annotati onsPage(sel f, rel easeNane):
def generate(self):

7.3.3 Script main features

The script has an objected oriented design in its entirety, since, in this way, other Python modules
can resuse its code by just importing the appropriate attributes from it. In order to generate the
release status pages an instance of the class StatusPages must be created and a call to its attribute
generate() must be made.

One of the most interesting features of the script involves a mechanism for generating a persistent
database of older releases. The shel ve module provided by the Python standard library was used
for this purpose. This module uses Python's database handlers to implement persistent dictionaries
(similar to hash tables). A shelve object uses string keys, but the value of the object can be of any
datatype as long as it can be handled by the pi ckl e module.

Each release was implemented as an object that contained certain attributes, such as the release
name, whether the release was still on disk or not, the implementation of the methods that retrieve
the information about the release and even other Build objects.

For each release six different build objects were implemented. Each build object corresponded to
the release being built in one of the three build machines (dOmino.fnal.gov, dOlxbld4.fnal.gov or
dOlomite.fnal.gov,) and to each of the two different compiler setups for building (debug or maxopt.)

Once each build object was constructed, the method getBuildData() was called for each object,
which would retrieve the current build number for that release and the number of broken packages
as well. As it can be seen in the class skeleton shown above, the class Build contains three other
methods 1 addition to getBuildData(), of which __iit_ () is just the class constructor. The other
two, getCurrentBuildNumber(self, buildDir, buildList) and getBrokenPackages(self, buildDir,
buildList) perform the tasks just mentioned.

7.3.4 Challenges

As it was briefly mentioned, the code releases are built in three different machines:

* dOmino.fnal.gov
= dOlxbld4.fnal.gov
® dOlomite.fnal.gov

It was then necessary to design a mechanism to send commands across the network and to get their
output back 1n the local environment.

Python's popen command provided a way of interacting with the operating system from a Python
script; it was still necessary to send the commands from one operating system to the other across the
network.

For this, the UNIX command r sh was used. r sh connects to a host specified as the first argument
and executes a command supplied to it as the second argument. It copies its standard input to the
remote command, the standard output of the remote command to its standard output, and the

15-

standard error of the remote command to its standard error. Interrupt, quit and terminate signals are
propagated to the remote command.

Another difficulty arose in the implementation of the method to obtain the number of broken
packages 1n a given release. This attribute method of the class Build simply counts the number of
packages present in a summary file which is usually executed once the build is done by a script called
find_broken.sh. However, if this file is not found the script find_broken.sh 1s immediately executed
by the the release status script and the summary file is then analyzed.

The difficulty in this implementation was that the shell script find_broken.sh could only be executed
by first doing a sequence of setups related to the release and the compilation characteristics, which
included aliases.

An alias is an alternative and usually easier-to-understand name for a defined data object. This data
object can be defined once and later a programmer can define one or more equivalent aliases that
will also refer to that data object. Unfortunately, aliases cannot be sent with the network command
rsh. That is, we were not able to execute find_broken.sh remotely.

A solution for this problem was eventually derived from a suggestion by Paul Russo to implement
"Trojan horse" scripts for certain aspects of the release status script. Such a script can be installed in
a remote computer and the only command that is sent across the network is its execution command.
In this way, all the setups and a call to find_broken.sh were put together in a shell script that could
be executed remotely (Appendix E).

7.3.5 Other features

A few other features were later implemented. One of them consisted in making each of the fields
indicating the number of broken packages in the Error Status Page a link to the log file
corresponding to that release build.

Another feature consisted in implementing a mechanism for release managers to include comments
about the releases. This was implemented by writing a small script that could be run on the
command line and, by providing a release name and either a string or a file to it, it would generate an
HTML page with this information. These pages could be reached by a link next to the release name
in any of the status pages (Appendix D).

For the generated web-pages please visit:

http:/ /www-d0.fnal.cov/computing/releases/ReleaseStatus /html/overview.html.

8 Acknowledgments

I would like to thank greatly the three people that played an essential role in making my summer a
success and an extraordinary learning experience: Alan Jonckheere, Paul Russo and my supervisor,
David Ritchie. It has been a pleasure working with and learning from them.

I would also like to thank the SIST committee for giving me this opportunity as well as Dianne
Engram, Dr. Davenport, Elliott McCrory, my mentor Cosmore Sylvester, my fellow interns and all
the people that in any way helped for making this summer a remarkable experience.

16-

9 References

“Physics Highlights from the DO Experiment 1992-1999.”
http://d0serverl.fnal.cov/projects/results/runi/highlichts /runi summary.html

Adams, David L. “CTEST 2.00: an interface for building C++ packages.” Rice University, 1999.

Brooijmans, G., Greenlee, H., Melanson, H., Wometsley, J. “CTEST/CTBUILD Review Report”
1999.

Kochan, Stephen G. and Wood, Patrick H. Wood. Exploring the UNIX system. Hayden Book
Company. New Jersey, 1984.

Lundh, Fredrik. Python Standard Library. O'Reilly & Associates, Inc. California, 2001.

Lutz, Mark and Ascher, David. Learning Python. O'Reilly & Associates, Inc. California, 1999.

17-

Appendix A

ctbuildDB

#

Determ nes whi ch packages are cthuild

in a release specified as the first argunent

Results are stored in three files, one containing
the list of packages that are ctbuild called

ctbpkg, another one called notctbpkg

that contains the list of non ctbuild

packages and one file called others that contains
the packages w thout a GNUmakefil e

#

create the output files
cat > ctbpkg

cat > notct bpkg

cat > other

change working directory to the one specified
cd $1
packages=*

for package in $packages

do
tmp='1s $package | grep GNUnmekefil e’
if [-n"$tm"]
t hen
out put =* grep ctbuil d $package/ GNUmakefi | e’
if [-n "Soutput”]
t hen
cd
echo "$package" >> ctbpkg
el se
cd
echo "$package" >> not ct bpkg
f
cd $1
el se
cd
echo "$package" >> ot her
f
cd $1
done

return to the working directory
cd

display the results

echo Results

echo ctbuild packages ‘wc -1 ctbpkg

echo not ctbuild packages ‘wc -1 notctbpkg
echo other ‘we -1 other®

18-

Appendix B

testGenerator.py

#! usr/bin/env python

""" testCGenerator.py -- Build tool.

Eval uat e each conponent test of a given package to determ ne whether it is zeroth order
or first order, where zeroth order is a conponent test that has a main function but
without including its own include file and first order is a conmponent test that
includes its own include file.

Cenerate first order tests for the conmponents having only a zeroth order test.

The program shoul d be executed after having set the variabl e SRT_PRI VATE_CONTEXT
to the local release area, and by passing to it the package name as an argunent."""

i mport os
import re
import string
i mport sys

packagesLi st = []

if len(sys.argv) <= 1:
print '\nERROR No package nanmes provided.’
sys. exi t(0)
el se:
for argv in sys.argv[1l:]:
if argv[-1] == "/":
packagesLi st. append(argv[:-1])
el se:
packagesLi st. append(ar gv)

def get Subdi rs(packageDirectory):
subdirs = os. path.join(packageDi rectory, ’'SUBDI RS)
if not os.path.isfile(subdirs):
print "\nWARNING Could not find %.’ % subdirs
return O

subdi rsList =[]
f = open(subdirs, 'r’)
for line in f.xreadlines():

if re.search(’ (|\s+)#(|\s+)\S+, line): continue
m = re.search(’\w+' ,line)
if m subdirsList.append(m group(0))

f.close()

if len(subdirsList) == 0:
print "\nWARNING % is enpty.’ %subdirs
return O

subdi rsList.sort()

return subdirsLi st

def get Conponent s(conmponent sDirectory):
conponents = 0s. path.join(conponentsDirectory, 'COVPONENTS')
if not os.path.isfile(conponents):
print "\nCould not find %."' % conponents
return O

conponent sList =[]
f = open(conponents, 'r’)
for line in f.xreadlines():

if re.search(’ (|\s+)#(|\s+)\S+', line): continue
m = re.search(’\w+', line)
if m conponentsList.append(m group(0))

f.close()

i f len(conmponentsList) == 0:

print "\nWARNING % is enpty.’ % conponents

-19-

return O
conponent sLi st.sort ()
return conponentsLi st

def anal yzeConponent Test s(conponent sLi st, subdir, package, packageDi rectory):
zerothOrderTests = []
firstOrderTests = []

print the list of conponents
print '\ nConponent list in % directory:\n" % subdir
for component in componentsList:
print component + ', ',
print "\n’

default assignments

testDir = subdir

testDirectory = os.path.join(packageDirectory, testDir)
conponent Header = conponent + '. hpp’

header Di r = package

testDirectories =[]
testDirsTuple = (subdir, 'test’)
for testDir in testDirsTuple:
testDirPath = os. path.join(packageDirectory, testDir)
if os.path.isdir(testDirPath):
testDirectories. append(testDir)

for component in componentsList:
check that a test for this conponent exists
conmponent Test Name = conponent + ' _t.cpp’
for testDir in testDirectories:
testDirectory = os.path.join(packageDirectory, testDir)
i f conponentTestNane in os.listdir(testDirectory):
conponent Test = os.path.join(testD rectory, conponentTest Nane)
br eak
el se:
print 'ERROR Could not find a conponent test for %.’ % conponent
conti nue

headerDirectories = []
header Di r sTupl e = (package, subdir)
for headerDir in headerDirsTuple:
header Di rPath = os. pat h.j oi n(packageDirectory, headerDir)
if os.path.isdir(headerDirPath):
header Di rectori es. append(headerDi r)

check that a header file for this conponent exists
header Extensions = (' .hpp’, ".h', ".hh’, ".H)
for headerDir in headerDirectories:
headerDi rectory = os. path.joi n(packageDirectory, headerDir)
headerDi rectorylLi st = os.listdir(headerDirectory)
header Found = 0
for extension in header Ext ensi ons:
conponent Header = conponent + extension
i f conponent Header in headerDirectorylList:
header Found = 1
br eak
i f header Found: break
el se:
print 'ERROR: Could not find a conponent header for %.’ % conponent
conti nue

i ncludeStringl
i ncl udeString2

= 'U%/ %’ % (package, conponent Header)
= conponent Header
if headerDir == package or headerDir == ’'src’:
includeStringl = ' %/ %' % (package, conponent Header)
i ncl udeStri ng2 = conponent Header
i ncludeStringPatternl = re.conpil e(’ #i ncl ude\s+("%"| <%)’
% i ncludeStringl, includeStringl))
i ncludeStringPattern2 = re.conpil e(’ # nclude\s+("%"| <¥%>)’

20-

el se:

% (includeString2, includeString2))

includeStringl = ' %/ %/ %’ % (package, headerDir, conponent Header)

i ncl udeStri ng2 = conponent Header
i ncludeStringPatternl = re.conpil e(’ # nclude\s+("%"| <¥%>)’

% i ncludeStringl, includeStringl))

i ncludeStringPattern2 = re.conpil e(’ #i ncl ude\ s+(" %" | <%>)’

% (includeString2, includeString2))

f = open(conponentTest, 'r’)
stringFound = 0
for line in f.xreadlines():

if headerDir == testDir:
if includeStringPatternl.search(line):

includeStringPattern = includeStringPatternl

elif includeStringPattern2.search(line):
includeStringPattern = includeStringPattern2
print "WARNING |Illegal include statenent found in’

+

conmponent test % .’ % conponent Test Nanme

el se: continue
el se:
includeStringPattern = includeStringPatternl
if not includeStringPattern.search(line): continue

check that the string has not been commented out
if includeStringPattern == includeStringPatternl:

comment edLi nePattern = re.conpile(’//(]|s+)#include\s+("%"| <%>)’
% (i ncludeStringl, includeStringl))

el se:

comment edLi nePattern = re.conpile(’//(]|s+)#i nclude\s+("%"| <%>)’

% (i ncludeString2, includeString2))

i f comment edLi nePattern.search(line):

print '<--> WARNING The include statenent of the conponent test’

PR

+ conponent Test Nane + ' has been commented out.
"uncomment ed include string will be added.’

conti nue
el se:
stringFound = 1
br eak
f.close()
i f stringFound:

el se:

print ' Conponent test % already includes its include file.’

% conponent Test Nane
firstOderTests. append(conmponent Test Nane)

print ' Conponent test % does not include its include file.’

% conponent Test Nane
zer ot hOr der Test s. append(conponent Test Nane)
generateFirst Order Test (testDirectory, component, includeStringl)

return(zerothOrderTests, firstOderTests)

def generateFirstOderTest(testFilesDirectory, conponent, includeString):
conponent I ncl udeString = ' #include "%"" % i ncludeString)
print '<--> Add

ing conponent include string \"%\’'..." % conponent!|ncludeString,

conmponent Test Name = conponent + ' _t.cpp’

conponent Test

backupFi | eNanme
backupFile = os
os. renane(conponent Test, backupFil e)

i nput = open(ba
out put = open(c
includeStringWittenToFile = 0

for

line in inp
if line[
elif not

= os.path.join(testFilesDirectory, conponentTestNane)

= conponent + ' _t_original.cpp’
.path.join(testFilesDi rectory, backupFileNange)

ckupFile, "r")
onponent Test, 'wW)

ut. xreadlines():

0:2] =="//": output.wite(line)
includeStringWittenToFil e:

output.wite(’\n" + conponentlncludeString + "\n\n")

includeStringWittenToFile = 1

if line[O] =="'\n": continue

21-

A new’

+
+

el se: output.wite(line)
el se: output.wite(line)
i nput . cl ose()
out put . cl ose()
print 'done.’

def main():
publ i cContext = o0s.environ. get (' SRT_PUBLI C_CONTEXT")
if not publicContext:
print '\nERROR SRT_PUBLI C CONTEXT is not set.’
sys. exi t(127)

privateContext = os.environ. get (' SRT_PRI VATE_CONTEXT')
if not privateContext:
print '\ nERROR SRT_PRI VATE_CONTEXT is not set.’
sys. exi t(127)

for package in packagesList:
packageDi rectory = os.path.join(privateContext, package)
if not os.path.isdir(packageD rectory):
print "\nERROR Could not find %.’ % packageDirectory
conti nue

print summary header
print "\ n#\n#----- <Ug>----- \n#\n' % package

subdi rsLi st = get Subdi r s(packageDirect ory)
i f subdirsList == 0:
look for a conponents file in the top-level of the package structure
conponent sDi rectory = os. path.joi n(packageDirectory)
conponent sLi st = get Conponent s(conponent sDi rect ory)
i f conponentsList == 0: continue
zerothOrderTests, firstOrderTests = anal yzeConponent Test s(conponent sLi st,
subdi r, package, packageDi rectory)

report results
print '\ nPackage % summary.\n’ % package
print 'Zeroth order conponent tests:’
for component in zerothOrderTests:
print '\t%’ % conponent
print '\nFirst order conponents tests:’
for component in firstOrderTests:
print '\t%’ % conponent
print '\ nTotal nunber of components: %l.’ %I en(conponentsList)
print 'Total nunber of nodified tests: %.’ %/ en(zerothO derTests)
el se:
l ook for a conmponents file in each subdirectory
for subdir in subdirsList:
conponent sDi rectory = os. path.joi n(packageDi rectory, subdir)
if not os.path.isdir(conmponentsDirectory):
print "\nERROR. Could not find %.' % conponentsDirectory
conti nue

conponent sLi st = get Conponent s(conponent sDi rectory)
i f conponentsList == 0: continue
zerot hOrderTests, firstOrderTests =
anal yzeConponent Test s(conponent sLi st, subdir,
package, packageDirectory)

report results
print '\ nPackage % summary.\n’ % package
print 'Zeroth order conponent tests:’
for component in zerothOrderTests:
print "\t%’ % conponent
print "\ nFirst order conponents tests:’
for component in firstO derTests:
print "\t%’ % conponent
print "\ nTotal nunber of conponents: %l.’ %I en(conponentsList)
print ' Total nunmber of nodified tests: %l.’ % en(zerothO derTests)

20

if __name__ =="'_ _main__":

el se:

We are being run as a script.
mai n()
sys. exi t(0)

We are being | oaded as a nodul e.

pass

23

Appendix C

ReleaseStatus.py

#! /usr/bin/env python
"""Rel easeSt at us. py generates four rel ease status pages."""

#
Modul e inports.
#

i mport commands

i mport gl ob

i mport os

i mport os.path

i mport re

i mport shel ve

i mport stat

import string

i mport sys

import time

i mport HTM_gen. barchart as barchart
from HTM.gen. HTM.col ors inport *
from HTMLgen. HTM_gen i nport *

#

G obal data specifications.

#

_author__ = 'Mariano Zimier zinmmer@nal.gov’
_version__ ='0.4.0

rel easeSt at usGen
rel easeStatusDir

= os.path.split(sys.argv[0])[1]

= sys. pat h[0]

imageDir = os.path.join(’'..", "inage')

dataDir = os. path. abspat h(os. path.join(rel easeStatusDir, ’'data’))

htm Dir = os.path. abspath(os. path.join(rel easeStatusDir, "htm’))
annotationsDir = os. path. abspat h(os. path.join(releaseStatusDir, 'annotations’))
docTitle = ' Rel ease Status Page (Version: %)’ % __version__

whi |l e not os. path. exi sts(os. pat h. abspat h(os. path.join(rel easeStatusDir, rel easeStatusCen))):

print "Program", releaseStatusGen, " not found within ", releaseStatusDir, " directory."

rel easeStatusDir = raw_i nput("Specify directory path to " + releaseStatusGen + " or press
only ENTER to exit.

if releaseStatusDir == "": sys.exit(1)

print "Directory path ", releaseStatusDir,

sys.path.insert(0, rel easeStatusDir)

rel easeStatusDir = sys. pat h[0]

will be inserted into sys.path[0]"

try:
os.nkdir(htm Dir)
print "(Rel easeStatus.py) - nmade html sub-directory”
except os.error:
pass
print "(Rel easeStatus.py) - did not make html sub-directory (may already exist)."

try:
os. nkdi r (annot ati onsDir)
print "(Rel easeStatus.py) - nade annotations sub-directory”
except os.error:
pass
print "(Rel easeStatus.py) - did not make annotations sub-directory (may already exist)."

rel easesDir = '/dOdist/dist/rel eases’
scriptsDir = '/Runll/home/dOrel mgr’

dOmi no = ' dOm no. fnal . gov’

24

dol xbl d4
dOlomte

#

' dOl xbl d4. f nal . gov’
"dOlom te. fnal.gov’

Class definitions.

#

class Tool s:

def

exi sts(self, objective, path, input):
m = re. conpil e(objective)
for line in input:
if msearch(line): return |line
el se: continue
el se:
print "WARNING Could not find %.’ % path
return O

cl ass Command:

def

def

_init__(self, commandNane):
sel f. name = commandNane

execute(self):

f = os. popen(sel f. nane)
output = f.readlines()
f.close()

return out put

class Buil d:

def

def

_init__(self, hostName, version, release):
sel f. host = host Nane

self.platform = version

sel f.rel easeNane = rel ease

sel f. bui | dNumber = -’

sel f. bui | dNurmber C = BLACK

sel f.buildlnProgress = 0

sel f. brokenPackages = ' -’

sel f.linkToLog = " -’

get Current Bui | dNunber (sel f, buildDr, buildList):
bui | dNunmber = " -’
bui | dNunmberFile = os.path.join(buildDir, ’.buildnum)
path = Tool s()
if not path.exists(’'.buildnum, buildNunberFile, buildList):
bui | dNunmber = " -’
bui | dNunmber C = BLACK
bui | dl nProgress = 0
return (buil dNunber, buil dNunberC, buil dl nProgress)

readFile = Command("rsh -n % -1 dOrelngr -F cat %" % (self. host,
bui | dData = readFil e. execute()
for line in buildData:

m = re.search(’\d+, line)
if m
bui | dNumber = int(mgroup(0)) - 1
br eak
el se:
bui | dNumber = " -’

bui | dNunber C = BLACK
bui | dl nProgress = 0
return (buil dNunber, buil dNunberC, buil dl nProgress)

bui | dl nProgress = 0;
whi |l e buil dNunber > 0:
begin = 'buil d-%-0%.begin" % (self.platform buil dNunber)
end = 'build-%-0%.end % (self.platform buil dNunber)
if re.match(’\d\d', repr(buil dNunber)):
begin = "build-%-%.begin’ % (self.platform buil dNunber)
end = "build-%-%.end % (self.platform buil dNunber)
begi nPattern = re. conpil e(begin)
endPattern = re.conpil e(end)
for i in buildList:

5.

bui | dNunber Fil e))

def

i f beginPattern.search(i):
for j in buildList:
m = endPattern. search(j)
if m break
el se: buildlinProgress =1

br eak
el se:
bui | dNunber = bui | dNunber - 1
conti nue
br eak

el se: buil dNunber = -’

i f buildNumber == "-": buildNunmberC = BLACK

elif buildlnProgress: buil dNunberC = RED

el se: bui | dNunmber C = GREEN6

return (buil dNunmber, buil dNunber C, buil dl nProgress)

get BrokenPackages(sel f, buildDir, buildList):
br okenPackages = []

end = "build-%-0%.end % (self.platform self. buil dNunber)
sunmary = 'sumary-0%.txt’ % sel f. buil dNunber
if len(repr(self.buildNunber)) == 2:
end = "build-%-9%.end % (self.platform self.buil dNunber)
sunmary = 'summary-%.txt’ % sel f. buil dNunber
endPattern = re.conpil e(end)
sunmaryPattern = re. conpil e(sunmary)

sunmaryFile = os.path.join(buildDir, sumary)
path = Tool s()
if not path.exists(summary, summaryFile, buildList):
if re.search(’-maxopt’, self.platform:
findBroken = Conmand("rsh -n " + self.host + " -1 dOrelmgr -F " +
"'source " + scriptsDir + "/update_relstat_err.sh " +
sel f.rel easeNane + " maxopt'")
out put = findBroken. execute()
el se:
findBroken = Conmand("rsh -n " + self.host + " -1 dOrelnmgr -F " +
"'source " + scriptsDir + "/update_relstat_err.sh " +
self.rel easeNane + " default’'")
out put = findBroken. execute()
el se:
foundEnd = 0
foundSunmmary = 0
premat ureSummary = 0
for i in buildList:
if summaryPattern.search(i):
foundSummary = 1
if endPattern.search(i):
foundEnd = 1
i f foundEnd and not foundSunmmary:
premat ureSummary = 1
br eak
i f prematureSummary:
if re.search(’ -maxopt’, self.platform:
findBroken = Conmand("rsh -n " + self.host + " -1 dOrelmgr -F"+

"source " + scriptsDir + "/update_relstat_err.sh "

sel f.rel easeNane + " naxopt'")
out put = findBroken. execute()
el se:
findBroken = Conmand("rsh -n " + self.host + " -1 dOrelmyr -F"+

"'source " + scriptsDir + "/update_relstat_err.sh "

self.rel easeNane + " default’'")
out put = findBroken. execute()

readFile = Command("rsh -n % -1 dOrelngr -F cat %" % (self.host,sumaryFile))
errorsData = readFil e. execute()
if len(errorsData) ==
br okenPackages = ' -’
el se:
for line in errorsbData:

26-

+

+

m=re.match(’\w+', line)

if m brokenPackages. append(m group(0))
i f brokenPackages == '-': return brokenPackages
el se: return | en(brokenPackages)

def getBuildData(self, resultsDir, results):
buildDir = os.path.join(resultsDir, self.platform

path = Tool s()
if not path.exists(self.platform buildDir, results):
sel f. bui | dNumber = ' -’
sel f. bui | dNumber C = BLACK
sel f. brokenPackages = ' -’
return None

listDir = Conmand("rsh -n % -1 dOrelngr -F Is -alt %" % (self.host, buildDr))
buildList = listDir.execute()
sel f. bui | dNurber, sel f. bui | dNunber C, sel f. buil dl nProgress =

sel f. get Current Bui | dNunber (bui | dDi r, bui | dLi st)

if self.buildlnProgress: self.brokenPackages = 'In progress’

el se: sel f.brokenPackages = sel f. get BrokenPackages(buil dDir, buildList)
if self.brokenPackages == '-’': self.linkToLog = "-’

elif self.brokenPackages == ' I n progress</ STRONG' :

sel f.l1inkToLog = ' I n progress</ STRONG'
el se: self.linkToLog = ' <A HREF="http://dOntwg02. f nal . gov/ bui | dl ogs/ vi ewBui | d. aspx?’ +
"rel ease=%&pl at formr¥%"’ % (sel f.rel easeNane, self.platform +
'>' + ‘sel f.brokenPackages' + '

cl ass Rel ease:
def __init__(self, rel easeNane):
sel f.name = rel easeNane
self.isOnDi sk = 'yes’
sel f.isOnDi skC = BLUE

def get DatelLastMdified(self):
rel easel nventory = os.path.join(rel easesDir, self.name, 'DOreldb’, 'inventory’)
try:
rel easel nventoryStat = os.stat(rel easel nventory)
sel f. dateLast Mbdified = tine.ctine(rel easel nventoryStat|[8])
except OSError:
sel f.dateLast Modified = -’

def getBuil dStatus(self):
rel easeDir = os.path.join(rel easesDir, self.name)
resultsDir = os.path.join(releaseDir, 'results’)

sel f. | Rl Xdebug = Buil d(dOmi no, '-', self.nane)
sel f. I Rl Xmaxopt = Build(dOmino, '-', self.nane)
sel f. RH6debug = Buil d(dOl xbl d4, ’'-', self.nane)
sel f. RH6maxopt = Bui |l d(dOl xbl d4, '-', self.nane)
sel f. RH7debug = Buil d(dOlonmite, '-', self.nane)
sel f. RH7maxopt = Build(dOlonite, '-', self.nane)

dOmino IR X
listDir = Command("rsh -n % -1 dOrelngr -F Is %" % (dOmi no, releaseDir))
dirList = listDir.execute()
path = Tool s()
if path.exists('results’, resultsDir, dirList):

listDir = Command("rsh -n % -1 dOrelngr -F Is %" % (dOmino, resultsDir))
results = listDir.execute()

m=re.conpile(’ (IRIX\d\.\d-\wwiw \d \d|IRIX\d-\wwAw \d_\d)")
for line in results:
if msearch(line):
sel f. I Rl Xdebug. pl atf orm = m search(li ne). group(0)
sel f. | R Xdebug. get Bui | dDat a(resul tsDir, results)
el se: continue

m=re.conmpile(’ (IRRX\d\.\d-\wWwww \d_\d-maxopt| IR X\d-\wWww\w \d_\d-maxopt)’)
for line in results:

27

if msearch(line):
sel f. | Rl Xmaxopt. pl atform = m search(line).group(0)
sel f. | Rl Xmaxopt . get Bui | dDat a(resultsDir, results)
el se: continue

dOl xbl d4 Red Hat 6 / Linux 2.2 Server
listDir = Conmand("rsh -n % -1 dOrelngr -F Is %" % (dOl xbl d4, rel easeDir))
dirList = listDir.execute()
if path.exists('results’, resultsDir, dirList):
listDir = Command("rsh -n % -l dOrelngr -F Is %" % (dOl xbl d4, resultsDir))
results = listDir.execute()

m = re.conpile(’ (Linux\d\.\d-\wwAw \d_\d|Linux\d-\wwiw \d_\d)")
for line in results:
if msearch(line):
sel f. RH6debug. pl atform = m search(!line). group(0)
sel f. RH6debug. get Bui | dDat a(resul tsDir, results)
el se: continue

m = re.conpil e(’ (Linux\d\.\d-\ww w \d_\d-maxopt | Li nux\ d-\wAww_\d_\d-naxopt)’)
for line in results:
if msearch(line):
sel f. RH6nmaxopt . pl atf orm = m search(li ne). group(0)
sel f. RH6nmaxopt . get Bui | dDat a(resul tsDir, results)
el se: continue

dOlonmite Red Hat 7 / Linux 2.4 Server
listDir = Conmand("rsh -n % -1 dOrelngr -F Is %" % (dOlonmte, releaseDir))
dirList = listDir.execute()
if path.exists('results’, resultsDir, dirList):
listDr Command("rsh -n % -1 dOrelmgr -F |ls %" % (dOlonmite, resultsDir))
results listDir.execute()

m = re.conpile(’ (Linux\d\.\d-\wAwAw \d_\d|Linux\d-\wwiw \d_\d)")
for line in results:
if msearch(line):
sel f. RH7debug. pl atform = m search(!line). group(0)
sel f. RH7debug. get Bui | dDat a(resul tsDir, results)
el se: continue

m = re.conpile(’ (Linux\d\.\d-\ww w \d_\d-maxopt | Li nux\ d-\wAww_\d_\d-naxopt)’)
for line in results:
if msearch(line):
sel f. RH7maxopt . pl atf orm = m search(li ne). group(0)
sel f. RH7maxopt . get Bui | dDat a(resul tsDir, results)
el se: continue

def getFreezeStatus(self):
sel f. | Rl Xdebugfreeze = "no’; self.|Rl XdebugfreezeC = RED

sel f. I Rl Xmaxoptfreeze = "no’; self.| R XmaxoptfreezeC = RED

sel f. RH6debugfreeze = 'no’; sel f. RH6debugfreezeC = RED

sel f. RH6nmaxoptfreeze = 'no’; sel f. RH6maxoptfreezeC = RED

sel f. RH7debugfreeze = 'no’; sel f.RH7debugfreezeC = RED

sel f. RH7maxoptfreeze = 'no’; self.RH7/maxoptfreezeC = RED

generi cFreezeCommand = 'upd list -h ww«dO. fnal.gov -akK+ DORunl |’

freezeAvail ability = genericFreezeCommand + ' % -qdist’ % sel f.nane
upd = Command(freezeAvail ability)

commandQut put = upd. execut e()

for line in comuandQut put:

m = re.match(’ "DORunl 1" "9" "NULL" "dist" """ %self.name, |ine)
if m
sel f.freezeAvailable = 1
br eak
el se:

sel f.freezeAvailable = 0
return None

| Rl Xdebug = re.conpile(r’ (IR X6\.5-KCC 4_0| IRl X6-KCC 3_4)")

I Rl Xmaxopt = re.conpile(r’ (1R X6\.5-KCC 4_0-nmaxopt || Rl X6- KCC_3_4- maxopt)’)
RH6debug = re. conpil e(r’ (Li nux2\.2-KCC 4_0]| Li nux2-KCC 3_4)")

8.

RH6maxopt = re. conpil e(r’ (Li nux2\.2-KCC 4_0- maxopt | Li nux2- KCC_3_4- maxopt) ')
RH7debug = re. conpil e(r’ (Li nux2\.4-KCC 4_0]| Li nux2-KCC 4_0)")
RH7maxopt = re. conpile(r’ (Li nux2\.4-KCC_4_0- maxopt | Li nux2- KCC_4_0- maxopt)’)

pl at f or nSpeci fi cAvail ability = generi cFreezeCommand + '-bin %’ % self.name
upd = Command(pl at f ormBpeci fi cAvail ability)
comandCQut put = upd. execut e()
for line in comandCQut put:
i f | Rl Xmaxopt.search(line):
sel f. I R Xmaxoptfreeze = "yes'; self.| Rl XnmaxoptfreezeC = GREENG
elif | Rl Xdebug. search(line):
sel f. I Rl Xdebugfreeze = "yes’; self.| Rl XdebugfreezeC = GREENG
elif RH6maxopt.search(line):
sel f. RH6nmaxoptfreeze = 'yes’; sel f. RHomaxoptfreezeC = GREENG
elif RH6debug. search(line):
sel f. RH6debugfreeze = ’'yes’; self.RH6debugfreezeC = GREEN6
elif RH7maxopt.search(‘line‘):
sel f. RH7maxoptfreeze = 'yes’'; sel f. RH7maxoptfreezeC = GREENG
elif RH7debug. search(line):
sel f. RH7debugfreeze = ’'yes’; self.RH7debugfreezeC = GREEN6

def generateAnnotationsFile(self):
annot ati onsFi | eNane = self.nane + ’.txt’
annot ati onsFile = os.path.join(annotationsDir, annotationsFil eNane)
enptyFile = os.path.join(rel easeStatusDir, 'enptyFile’)
if not os.path.isfile(annotationsFile):
createAnnotationFile = Command("cat % > %" % (enptyFile, annotationsFile))
out put = createAnnotationFile.execute()

cl ass Dat abase:
def __init__(self, databaseNane):
sel f. nane = dat abaseNane

def retrieveRel easeNanes(sel f):
rel easeNanes = []
rel easeDat abase = shel ve. open(sel f.nane, 'r’)
return rel easeDat abase. keys()

def retrieveRel eases(self):
rel eases = []
rel easeDat abase = shel ve. open(sel f.nane, 'r’)
for key in rel easeDat abase. keys():
rel eases. append(r el easeDat abase[key])
return rel eases

def update(self, |istCOfRel eases):
rel easeDat abase = shel ve. open(sel f.nane, 'c¢’)
for release in |istORel eases:
rel easeDat abase[rel ease. nane] = rel ease
rel easeDat abase. cl ose()

cl ass StatusPages:
def __init__(self):
self.releases = []

def get Rel easeStatus(self):
current Rel easeNanes = []
dat abaseRel easeNanes = []
dat abaseRel eases = []
rel easeNanes = []

listOFEntries = os.listdir(rel easesDir)

t Rel easePatternl = re.conpile(r’ At\d\d\.\d\d\.\d\d")
t Rel easePattern2 = re.conpile(r’~t\d\d\d-gcc’)
pRel easePattern = re.conpile(r’p\did\.\d\d\.\d\d")
oRel easePattern = re.conpile(r’?onl\d\d\.\d\d\.\d\d")
for entry in listOEntries:
if not tRel easePatternl. match(entry) and not tRel easePattern2. match(entry) and \
not pRel easePattern. match(entry) and not oRel easePattern.match(entry): continue
current Rel easeNanes. append(entry)

29._

dat abase = Dat abase(’ rel easeDat abase’)

if os.path.isfile(os.path.join(os.curdir, database.nane)):
dat abaseRel easeNanes = dat abase.retri eveRel easeNanes()
dat abaseRel eases = dat abase.retri eveRel eases()

rel easeNanmes = current Rel easeNanes|:]

for dbRel easeNane i n dat abaseRel easeNanes:
i f dbRel easeNanme in current Rel easeNanes: continue
rel easeNanes. append(dbRel easeNane)

rel easeNanes. sort ()
rel easeNanes. reverse()

for rel easeNane in rel easeNanes:

if rel easeNane in current Rel easeNanes:
rel ease = Rel ease(rel easeNane)
rel ease. get Dat eLast Modi fi ed()
rel ease. get Bui | dSt at us()
rel ease. get FreezeSt at us()
rel ease. gener at eAnnot ati onsFi | e()
sel f.rel eases. append(r el ease)

el se:
for dbRel ease in databaseRel eases:

i f dbRel ease. nane == rel easeNane:
print "% retrieved from database’ %rel easeNane
dbRel ease. i sOnDi sk = ' no’
dbRel ease. i sOnDi skC = ' FF3300’
sel f. rel eases. append(dbRel ease)

dat abase. updat e(sel f. rel eases)

def overvi ewSt at usPage(sel f, fileNane, before=None, after=None, top=None, home=None):
doc = SeriesDocunent(’Rel Stat.rc’)

doc.title = docTitle

doc.subtitle = 'Status Overvi ew

doc. banner = None

doc.logo = (os.path.join(imgeDi r, 'dOlogo.gif’), 111, 68)

doc. prev (os.path.join(imgeDir, 'BTN _PrevPage.gif’'), 74, 19)
doc. next (os.path.join(imgeDi r, 'BTN _NextPage.gif’'), 74, 19)
doc.top = (os.path.join(imgeDi r, BTN Manual Top.gif’), 74, 19)
doc. home = (os.path.join(imgeDir, 'BTN HonePage.qgif’), 74, 19)
doc. goprev = before

doc. gonext = after

doc.gotop = top

doc. gohone = hone

rowContents = []
for release in self.rel eases:
line = [' + release.nane + ' </STRONG<A HREF="%s.htm "’ % rel ease. name +

TSLA <A
Bol d(Font (rel ease. i sOnDi sk, col or=rel ease.i sOnDi skC)),
Bol d(rel ease. dat eLast Modi fi ed)]
rowCont ent s. append(i ne)

rel Tabl e = Tabl e(’ Rel eases On Disk’,
headi ng=[’' Rel ease’,’ On Di sk’ ,’ <TT>DOrel db/i nventory</ TT>
 Date Last Mdified],
body_col or =[' #DDDDDD , * #FFFFFF' |’ #FFFFFF’],
headi ng_col or =[’ #DDDDDD , ’' #FFFFFF' |’ #FFFFFF’],
headi ng_al i gn="center’,
columl_align="center’,
cell _align="center’,
body=r owCont ent s)
doc. append(rel Tabl e)

doc. append(HR())
doc. append_file(os.path.join(dataDir, "info-txt.htm "))
doc.write(os.path.join(htm Dir, fileNane))

-30-

def buil dStatusPage(self, fileNanme, before=None, after=None, top=None, hone=None):
doc = SeriesDocunent(’Rel Stat.rc’)
doc.title = docTitle
doc.subtitle = "Build Status’
doc. banner = None
doc.logo = (os.path.join(imgeDi r, 'dOlogo.gif’), 111, 68)

doc. prev (os.path.join(imgeDir, 'BTN _PrevPage.gif’'), 74, 19)
doc. next (os.path.join(imgeDi r, 'BTN _NextPage.gif’'), 74, 19)
doc.top = (os.path.join(imgeDi r, BTN Manual Top.gif’), 74, 19)
doc. homre = (os. path.join(imgeDir, 'BTN HonePage.qgif’'), 74, 19)
doc. goprev = before

doc. gonext = after

doc.gotop = top

doc. gohone = hone

rowContents = []
for release in self.rel eases:
line = [' + release.nane + ' </STRONG<A HREF="%s.htm "’ % rel ease. name +

A</ A

Bol d(Font (rel ease. i sOnDi sk, col or=rel ease.i sOnDi skC)),
Bol d(Font (rel ease. | Rl Xdebug. bui | dNurnber ,

col or =r el ease. | Rl Xdebug. bui | dNunberC)),
Bol d(Font (rel ease. | Rl Xmaxopt . bui | dNunber,

col or =r el ease. | Rl Xmaxopt . bui | dNunberC)),
Bol d(Font (r el ease. RH6debug. bui | dNunber, col or=rel ease. RH6debug. bui | dNunber Q)),
Bol d(Font (r el ease. RH6rmaxopt . bui | dNurnber ,

col or =r el ease. RH6maxopt . bui | dNunber C)),
Bol d(Font (r el ease. RH7debug. bui | dNunber, col or=rel ease. RH7debug. bui | dNunber Q)),
Bol d(Font (r el ease. RH7maxopt . bui | dNunber,

col or =r el ease. RH7maxopt . bui | dNunber C))]

rowCont ent s. append(i ne)

rel Tabl e = Tabl e(’ Current Rel ease Build',
headi ng=[' Rel ease’,” On Disk’,’ IR X ,’ | Rl X
naxopt’,’ Red Hat 6’,’ Red Hat ' +
" 6
maxopt’,’ Red Hat 7’,’ Red Hat 7
maxopt’],

body_col or=[* #888888’ , ' #DDDDDD , ' #CCCCCC , ' #BBBBBB' , ' #CCCCCC' , * #BBBBBB' , ' #CCCCCC' , ' #BBBBBB' |,

headi ng_col or =[’ #888888’ , ' #DDDDDD , ' #CCCCCC , ’ #BBBBBB’ , ' #CCCCCC , ' #BBBBBB' , ' #CCCCCC , ' #BBBBBB' | ,
headi ng_al i gn="center’,
columl_align="center’,
cell _align="center’,
body=r owCont ent s)
doc. append(rel Tabl e)

doc. append(HR())
doc. append(’ The foll owi ng provides the proper interpretation of the information above.’)
ilist = [(Image(os.path.join(imageDir, 'green_dot.gif’)), Bold(’ The build is finished.’)),
(I'mage(os. path.join(imageDir, 'red_dot.gif’)), Bold(’ The build is in
progress.’))]
doc. append(Headi ng(4, ’'Legend’))
doc. append(| mageBul | et List(ilist))

doc. append(HR())
doc. append_file(os.path.join(databDir, "info-txt.htm "))
doc.write(os.path.join(htm Dir, fileNane))

def freezeStatusPage(self, fileNane, before=None, after=None, top=None, hone=None):
doc = SeriesDocunent(’ Rel Stat.rc’)
doc.title = docTitle
doc.subtitle = 'Freeze Status’
doc. banner = None
doc.logo = (os.path.join(imgeDi r, 'dOlogo.gif’), 111, 68)

doc. prev (os.path.join(imgeDir, 'BTN _PrevPage.gif’'), 74, 19)
doc. next (os.path.join(imgeDi r, 'BTN _NextPage.gif’'), 74, 19)
doc.top = (os.path.join(imgeDi r, BTN Manual Top.gif’), 74, 19)
doc. home = (os.path.join(imgeDi r, 'BTN HonePage.qgif’), 74, 19)
doc. goprev = before

31

doc. gonext = after

doc.gotop = top

doc. gohone = hone
rowContents = []

for release in self.rel eases:

line = [’ <STRONG’

Bol d(Font (rel ease. i sOnDi sk,
Bol d(Font (rel ease
Bol d(Font (rel ease

+ rel ease. nane + '’

Bol d(Font (r el ease. RH6debugf r eeze,

Bol d(Font (rel ease

Bol d(Font (rel ease. RH7debugf r eeze,

Bol d(Font (rel ease

rowCont ent s. append(i ne)

rel Tabl e = Tabl e(’ Avai |l abl e Frozen Rel eases’,
headi ng=[' Rel ease’,” On Disk’,’ IR X ,’ | Rl X
naxopt’,’ Red Hat 6’,’ Red Hat ' +
" 6
maxopt’,’ Red Hat 7’ ,’ Red Hat 7
maxopt’],

</ STRONG><A HREF="%s. htm "’

.| Rl Xmaxopt freeze,
. RH6maxopt f r eeze,

. RH7maxopt f r eeze,

col or=rel ease. i sOnDi skC)),
. | Rl Xdebugfreeze,

% r el ease. nane +

TSA <A

col or=rel ease. | Rl XdebugfreezeC)),

col or=rel ease. | Rl Xmaxopt freezeC)),

col or =r el ease. RH6debugfreezeQ)),
col or =r el ease. RH6nmaxopt freezeC)),

col or =r el ease. RH7debugfreezeQ)),
col or =rel ease. RH/maxopt freezeC))]

body_col or=[* #888888’ , ' #DDDDDD , ' #CCCCCC , ' #BBBBBB' , ' #CCCCCC' , ' #BBBBBB' , ' #CCCCCC' , ' #BBBBBB' |,

headi ng_col or =[’ #888888’ , ' #DDDDDD , ' #CCCCCC , ’ #BBBBBB’ , ' #CCCCCC , ' #BBBBBB’ , ' #CCCCCC , ' #BBBBBB' | ,
headi ng_al i gn="center’,
columl_align="center’,
cell _align="center’,

def

body=r owCont ent s)

doc. append(rel Tabl e)
doc. append(HR())
doc. append_file(os.path.join(dataDir, "info-txt.htm "))
doc.write(os.path.join(htm Dir, fileNane))
errorsSt atusPage(sel f, fileNane, before=None, after=None, top=None, honme=None):
doc = SeriesDocunent(’Rel Stat.rc’)
doc.title = docTitle
doc.subtitle = "Errors Status’
doc. banner = None
doc.logo = (os.path.join(imgeDi r, 'dOlogo.gif’), 111, 68)
doc. prev = (os.path.join(inmgeDir, 'BTN PrevPage.gif’'), 74, 19)
doc. next = (os.path.join(inmgeDi r, 'BTN NextPage.gif’'), 74, 19)
doc.top = (os.path.join(imgeDi r, BTN Manual Top.gif’), 74, 19)
doc. homre = (os. path.join(imgeDir, 'BTN HonePage.qgif’'), 74, 19)
doc. goprev = before
doc. gonext = after
doc.gotop = top
doc. gohone = hone
rowContents = []
for release in self.rel eases:

if release.isOnDisk == "yes':

line = [' + release.nane + ' </STRONG<A HREF="%s.htm "’ %rel ease. nanme

el se

Bol d(Font (rel ease. i sOnDi sk,

rel ease. | Rl Xdebug. | i nkToLog,
rel ease. | Rl Xmaxopt . |inkToLog,
rel ease. RH6debug. | i nkToLog,
rel ease. RH6maxopt . | i nkTolLog,
rel ease. RH7debug. | i nkToLog,
rel ease. RH7maxopt . | i nkToLog]

line = [<STRONG’

Bol d(Font (rel ease. i sOnDi sk,
Bol d(Font (rel ease
Bol d(Font (rel ease
Bol d(Font (rel ease
Bol d(Font (rel ease
Bol d(Font (rel ease

+ rel ease. nane + '

32

col or=rel ease. i sOnDi skC)),

</ STRONG><A HREF="9s. htm "’

col or=rel ease. i sOnDi skC)),
.| Rl Xdebug. br okenPackages)),

.| Rl Xmaxopt . br okenPackages)),

. RH6debug. br okenPackages)),

. RH6nmaxopt . br okenPackages)),

. RH7debug. br okenPackages)),

+ "S[A </ A,

% r el ease. nane
+ 'S[A </ A,

Bol d(Font (r el ease. RH7maxopt . br okenPackages))]
rowCont ent s. append(!i ne)

rel Tabl e = Tabl e(’ Nunber of broken packages’,
headi ng=[' Rel ease’,” On Disk’,’IRI X ,’ | RIX
naxopt’',' Red Hat 6’,’' Red Hat ' +
" 6
maxopt’,’ Red Hat 7’,’ Red Hat 7
maxopt’],

body_col or=[’ #888888’ ,’ #DDDDDD , ' #CCCCCC ,’ #BBBBBB’ , ' #CCCCCC , ’ #BBBBBB’ , ' #CCCCCC , ’ #BBBBBB'],

headi ng_col or =[’ #888888’ ,’ #DDDDDD , ' #CCCCCC' , ' #BBBBBB' , ' #CCCCCC' , * #BBBBBB' , ' #CCCCCC' , ’ #BBBBBB' |,
headi ng_al i gn="center’,
columl_al i gn="center’,
cell _align="center’,
body=r owCont ent s)
doc. append(rel Tabl e)

doc. append(HR())
doc. append_file(os.path.join(dataDir, "info-txt.htm "))
doc.write(os.path.join(htm Dir, fileNane))

def annot ati onsPage(sel f, rel easeNane):
annot ati onsFi | eName = rel easeNane + ' .txt’
annot ati onsPageNane = rel easeNane + '.htmi’
doc = Sinpl eDocunent (' Rel Stat.rc’)
doc.title = docTitle
doc. append(’ <H3>%s</ H3>' % r el easeNane)
doc. append_fil e(os. path.join(annotationsDir, annotationsFileNane))
doc.write(os.path.join(htm Dir, annotati onsPageNane))

def generate(self):
t = tine.clock()
sel f. get Rel easeSt at us()

sel f. overvi ewsSt at usPage(’ overview. htm’, None, 'build.htm’, ’overview htm’,
"status.htm)

sel f.buil dStatusPage(’ build.htm’, "overview htm’', 'freeze.htm’, ’'overview htm’,
"status.htm)

sel f.freezeStatusPage(’ freeze.htm ', "build.htm’, "errors.htm’, ’overview htm’,
"status.htm)

self.errorsStatusPage(’ errors.htm’, "freeze.htm’', None, 'overview html’, ’'status.htm’)

for release in self.releases: self.annotationsPage(rel ease. nane)

print 'Time to generate pages:’, tinme.clock() - t, ’'seconds’

if __name__ =="'_ _main

st at usPages = Stat EPages()
st at usPages. generat e()

print "Processing by ", __name__, " conplete."
el se:

print "File ", _ file__, "inported"

pass

332

Appendix D

relanno.py

#! [usr/bin/env python
"""rel anno. py appends a string or a file to a release annotations file."""

i mport os

i mport os.path

i mport sys

from HTM.gen. HTM_gen i nport *
fromtine inport localtime, strftine

__author__ = 'Mariano Zimier zimier@nal.gov’
__version__ ='0.1.0

rel easeStatusDir = sys. pat h[0]
annotationsDir = os. path. abspath(os. path.join(releaseStatusDir, 'annotations’))
htm Dir = os.path.abspath(os. path.join(rel easeStatusDir, 'htm’))

docTitle = ' Rel ease Annotations Page (Version: %)’ % _ version__

try:
os. nkdi r (annot ati onsDir)
print "(relanno.py) - nmade annotations sub-directory”
except os.error:
pass
print "(relanno.py) - did not make annotations sub-directory (may already exist)."

def main():
gl obal rel easeNane
flag = ' -’
annotation = '-’

if len(sys.argv) < 4:
print '\ nERROR Not enough argunents provided.’
sys. exit(0)
el se:
t Rel easePatternl re.conpile(r’~t\d\id\.\d\d\.\d\d")
t Rel easePatt ern2 re.conpile(r’~t\d\d\d-gcc’)
pRel easePattern = re.conpile(r’p\did\.\d\d\.\d\d")
oRel easePattern = re.conpile(r’~onl\d\d\.\d\d\.\d\d")
if tRel easePatternl. match(sys.argv[1l]) or tReleasePattern2. match(sys.argv[1]) or \
pRel easePattern. mat ch(sys. argv[1l]) or oRel easePattern. match(sys.argv[1]):
rel easeNane = sys. argv[1]

el se:
print "\nERROR Invalid release nanme: \'%\’.’ %sys.argv[1]
sys. exi t(0)
if sys.argv[2] =="'-f' or sys.argv[2] =="-m:
flag = sys.argv[2]
if flag == "-f":
if os.path.isfile(sys.argv[3]):
annot ati on = sys. argv[3]
el se:
print "\nERROR Invalid file nane: \"s%’'.’ %sys.argv[2]
sys. exit(0)
el se:
annotation = sys. argv[3]
el se:
print "\nERROR Invalid argument \'s%’'.’ %sys.argv|[?2]
sys. exit(0)

annot ati onsFi | eNane = rel easeNane + ' .txt’
annot ati onsFil e = os.path.join(annotationsDir, annotationsFil eNane)

if flag == "-f":

34

i nput = open(annotation, 'r’)
out put = open(annotationsFile, 'a')
output.wite(strftime("<P>%, % % % %1 %M % +0000<P>", localtime()))
for line in input.xreadlines():
output.wite(line)
i nput . cl ose()
elif flag == "-nm:
f = open(annotationsFile, ’a')
f.wite(strftine("<P>%, % % % %1 9%t %6 +0000<P>", localtine()))
f.write(annotation)
f.close()
el se:
pass

def updat eAnnot at i onsPage(r el easeNane) :
annot ati onsFi | eNane = rel easeName + '.txt’
annot ati onsPageNane = rel easeNane + '.htni’
doc = Sinpl eDocunent (' Rel Stat.rc’)
doc.title = docTitle
doc. append(’ <H3>%s</ H3>' % r el easeNane)
doc. append_fil e(os. path.join(annotationsDir, annotationsFileNane))
doc.write(os.path.join(htm Dir, annotati onsPageNane))

1 [

if _name__ =="'__main__

mai n()

updat eAnnot at i onsPage(r el easeNane)

print "Processing by ", __name__, " conplete."
el se:

print "File ", _file__, "inported"

pass

_35-

Appendix E

update_relstat_err.py

source /usr/local/etc/setups.csh

setup n32

setup DORunl| $1

srt_setup SRT_QUAL=%$2

cd $SRT_PUBLI C_CONTEXT

source ${ SRT_PUBLI C_CONTEXT}/ DOr el t ool s/ dOset wa. csh
find_broken. sh

-36-

